

Preliminary Environmental Information Report

Volume III - Appendices

Appendix 8A: Air Quality - Construction Phase

The Infrastructure Planning (Environmental Impact Assessment) Regulations 2017 (as amended)

Table of Contents

8A.	Air Quality – Construction Phase	8-1
8.1	Introduction	
8.2	Scope	
8.3	Methodology - Overview	
8.4	Construction Dust Assessment	
8.5	Construction Traffic Assessment	8-10
8.6	Conclusions	

Tables

Table 8A-1: Example Definitions of the Magnitude of Construction/ Demolition	
Activities	8-3
Table 8A-2: Receptor Sensitivity to Construction/ Demolition Dust Effects	8-4
Table 8A-3: Sensitivity of the Area to Dust Soiling Effects on People/ Property .	8-5
Table 8A-4: Sensitivity of the Area to Human Health Impacts	8-5
Table 8A-5: Sensitivity of the Area to Ecological Impacts	8-5
Table 8A-6: Classification of Risk of Unmitigated Impacts	8-6
Table 8A-7: Identification of Receptors for Construction Dust Assessment	8-6
Table 8A-8: Area Sensitivity for Receptors of Construction Dust	8-8
Table 8A-9: Risk of Impacts from Unmitigated Activities	8-9
Table 8A-10: Screening Criteria for Determining the Study Area	. 8-12
Table 8A-11: General ADMS Roads Model Conditions	. 8-13
Table 8A-12: Road Traffic Data	. 8-14
Table 8A-13: Modelled Human Receptors	. 8-16
Table 8A-14: Modelled Ecological Receptors	. 8-16
Table 8A-15: Defra Modelled Background Concentrations	. 8-19
Table 8A-16. Results of Construction Traffic Impact Assessment at Human	
Receptors	8-22
Table 8A-17: Ecological Sites Within Construction Traffic Study Area Containing	j
Features Which Are Sensitive to Air Pollutants	. 8-24
Table 8A-18: Results of Construction Traffic Impact Assessment at Ecological	
Receptors	. 8-24

8A. Air Quality – Construction Phase

8.1 Introduction

Overview

- 8.1.1 This report provides a technical appendix to Chapter 8: Air Quality of the Preliminary Environmental Information (PEI) Report (Volume I).
- 8.1.2 AECOM has been instructed by the Applicant to assess the likely significant effects on air quality as a result of the Net Zero Teesside project (hereafter referred to as the 'Proposed Development'). For more details about the Proposed Development, refer to Chapter 4: Proposed Development (PEI Report, Volume I).
- 8.1.3 Emissions to air from the Proposed Development have the potential to adversely affect human health and sensitive ecosystems. This technical appendix identifies and proposes measures to address the potential impacts and effects of the Proposed Development on air quality during construction (including enabling works), commissioning, and decommissioning. Emissions associated with construction phase could give rise to potential localised air quality effects from traffic and dust generation, which have the potential to affect human health and sensitive ecosystems if not appropriately managed.
- 8.1.4 Emissions to air from the Proposed Development during operation, comprising emissions from the combustion plant and the carbon capture plant and additional operational road traffic, are covered in Appendix 8B: Operational Assessment (PEI Report, Volume III).
- 8.1.5 The magnitude of air quality impacts at sensitive human receptors has been quantified for pollutants emitted from construction activities associated with the Proposed Development. The impact of emissions on sensitive ecological receptors has been considered in the context of relevant critical loads or critical levels for all identified ecological receptors.

8.2 Scope

Construction Phase Emissions

- 8.2.1 The assessment has considered the impact of emissions during the construction, commissioning, and decommissioning of the Proposed Development on local air quality. The assessment considers impacts from the year in which the construction works for the Proposed Development are due to commence, 2022.
- 8.2.2 The assessment comprises a review of the impacts of dust emissions from the various activities associated with the construction phase of the Proposed Development during planned construction works on site and the impacts associated with the emissions from construction traffic. Impacts on the

sensitive human and ecological receptors in the vicinity of the Site have been assessed.

Cumulative Impacts

- 8.2.3 Cumulative impacts from existing sources of pollution in the area are accounted for in the adoption of site-specific background pollutant concentrations from archive sources and a programme of project-specific baseline air quality monitoring in close proximity to Site. It is recognised, however, that there is a potential impact on local air quality from emission sources which were not present at the time of the survey.
- 8.2.4 The full list of short-listed cumulative schemes to be considered for the Proposed Development will not be available until the final ES, as detailed within Chapter 23: Cumulative ad Combined Effects (PEI Report, Volume I). The assessment for the final ES will therefore consider these schemes.
- 8.2.5 The traffic data used in this assessment includes predicted traffic growth on modelled roads between the current and the future year baselines. The methodology to determine the growth in traffic on the local road network is described in Chapter 16: Traffic and Transportation (PEI Report, Volume I). The predicted growth included in the traffic data ensures that the air quality assessment of road traffic emissions is inherently cumulative.
- 8.2.6 There is therefore no separate assessment of cumulative impacts of construction traffic as part of this PEI Report.

Sources of Information

- 8.2.7 The information that has been used within this assessment includes:
 - Chapter 4: Proposed Development;
 - Chapter 5: Construction Programme and Management;
 - Details on the site layout provided by the Applicant;
 - Ordnance Survey mapping;
 - Construction Traffic Data taken from Chapter 16: Traffic and Transportation (PEI Report, Volume I); and,
 - Baseline air quality data from AECOM diffusion tube monitoring within the Study Area and from published sources and Local Authorities.

8.3 Methodology - Overview

- 8.3.1 This remainder of this appendix describes the approach that has been taken to the assessment of emissions associated with the construction phase of the Proposed Development. This is broken down into the following subsections.
 - Qualitative assessment of construction dust; and
 - Quantitative assessment of construction phase road traffic emissions on local roads through dispersion modelling.

8.3.2 Non-Road Mobile Machinery is considered within Chapter 8: Air Quality (PEI Report, Volume I).

8.4 Construction Dust Assessment

- 8.4.1 The following three activities have been screened as potentially significant, based on the nature of construction activities proposed:
 - Earthworks (soil stripping, spoil movement and stockpiling);
 - Construction (including on-site concrete batching); and
 - Trackout (HGV movements on unpaved roads and offsite mud on the highway).

Magnitude Definitions

8.4.2 The potential magnitude of dust emissions is categorised¹ as detailed in Table 8A-1 below.

Table 8A-1: Example Definitions of the Magnitude of Construction/ Demolition Activities

Magnitude	Demolition	Earthworks	Construction	Trackout
Large	Total building volume >50,000 m ³ , potentially dust construction material (e.g. concrete), on-site crushing and screening, demolition activities >20 m above ground level	Site area >1ha potentially dusty soil type (e.g. clay). >10 heavy earth moving vehicles at once, bunds >8m high, total material moved >100,000 tonnes	Total building volume >100,000 m ³ , on-site concrete batching, sandblasting	>50 HDV (>3.5 tonne) peak outward movements per day, potentially dusty surface material (e.g. high clay content), unpaved road length >100 m
Medium	Total building volume 20,000 – 50,000 m ³ , potentially dusty construction material, demolition activities 10 to 20 m above ground level	Site area $0.25 - 1$ ha, moderately dusty soil type (e.g. silt), $5 - 10$ heavy earth moving vehicles at once, bunds 4-8 metres high, total material moved 20,000 - 100,000 tonnes	Total building volume 25,000 – 100,000m ³ , potentially dusty materials e.g. concrete, on- site concrete batching	10 – 50 HDV (>3.5 tonne) peak outward movements per day, moderately dusty surface material (e.g. high clay content), unpaved road length 50 – 100 m.
Small	Total building volume <20,000m ³ , construction material with low potential for dust release (e.g. metal cladding or timber), demolition activities <10 metres above ground level, demolition during wetter months	Site area <0.25 ha, large grain soil type (e.g. sand), <5 heavy earth moving vehicles at once, bunds <4 metres high, total material moved <20,000 tonnes	Total building volume <25,000m ³ , low dust potential construction materials. e.g. metal/timber	<10 HDV (>3.5 tonnes) peak outward movements per day, surface material low dust potential, unpaved road length <50 m.

¹ IAQM (2014). Guidance on the assessment of dust from demolition and construction.

Receptor Sensitivity Definitions

8.4.3 The assessment of the significance of the effects of construction dust has been made with respect to the receptor and area sensitivity definitions as outlined in Table 8A-2 to Table 8A-5 below. Sensitivity definitions have been made with reference to the IAQM guidance; receptors beyond 100 m are defined as low sensitivity, as it is considered that beyond this distance impacts would be limited; ecological receptors (including statutory designations, and non-statutory ecological receptors of local importance such as Local Wildlife Sites, national and local nature reserves) have been included as there are a number of ecological sites within the 350 m Study Area from the Site Boundary and 500m Study Area from the Site Entrances.

Table 8A-2: Receptor Sensitivity to Construction/ Demolition Dust Effects

Potential dust effect	Human perception of dust soiling effects	PM ₁₀ Health effects	Ecological effects
High sensitivity	Enjoy a high level of amenity; appearance/ aesthetics/ value of property would be diminished by soiling; receptor expected to be present continuously/	Public present for 8 hours per day or more, e.g. residential, schools, car homes	Locations with an international or national designation and the designated features may be affected by dust soiling.
Moderate sensitivity	Enjoy a reasonable level of amenity; appearance/ aesthetics/ value of property could be diminished by soiling; receptor not expected to be present continuously/	Only workforce present (no residential or high sensitivity receptors) 8- hours per day or more	Locations where there is a particularly important plant species, where dust sensitivity is uncertain or unknown or locations with a national designation where the features may be affected by dust deposition
Low sensitivity	Enjoyment of amenity not reasonably expected; appearance/ aesthetics/ value of property not diminished by soiling; receptors are transient / present for limited period of time; e.g. playing fields, farmland, footpaths, short term car parks*	Transient human exposure, e.g. footpaths, playing fields, parks	Locations with a local designation which may be affected by dust deposition.

- 8.4.4 Distances have been measured from source to receptor in bands of less than 20 m, less than 50 m, less than 100 m and less than 350 m for earthworks and construction, in accordance with the IAQM guidance. For trackout the receptor distances have been measured from receptor to trackout route (up to 50 m) and up to 500 m from the site exit. These distances bands have been applied in Table 8A-3 and Table 8A-4. For sensitivity of an area to ecological impacts the distance bands are for less than 20 m and less than 50 m.
- 8.4.5 In addition, the IAQM guidance considers the number of potentially affected receptors when defining the sensitivity: i.e. the more receptors present, the more sensitive the area.

Receptor	Number of	Distance from the source (m)				
sensitivity	receptors	<20	<50	<100	<350	
	>100	High	High	Medium	Low	
High	10-100	High	Medium	Low	Low	
	1-10	Medium	Low	Low	Low	
Moderate	>1	Medium	Low	Low	Low	
Low	>1	Low	Low	Low	Low	

Table 8A-3: Sensitivity of the Area to Dust Soiling Effects on People/ Property

Table 8A-4: Sensitivity of the Area to Human Health Impacts

Decenter consitivity	Number of	Distance	tance from the source (m)		
Receptor sensitivity	receptors	<20 <50 <1		<100	<350
High (annual mean PM ₁₀ concentration <24ug/m ³	>100	Medium	Low	Low	Low
	10-100	Low	Low	Low	Low
	1-10	Low	Low	Low	Low
Medium (annual mean	>10	Low	Low	Low	Low
(<24µg/m ³)	1-10	Low	Low	Low	Low
Low	≥1	Low	Low	Low	Low

Table 8A-5: Sensitivity of the Area to Ecological Impacts

Decenter consitivity	Distance from source (m)	
Receptor sensitivity	<20	<50
High	High	Medium
Medium	Medium	Low
Low	Low	Low
<u> </u>		

8.4.6

Risk Definitions

The potential risks from emissions from unmitigated demolition and construction activities have been defined with reference to the magnitude of the potential emission and the highest sensitivity receptor(s) within the effect area, as summarised in Table 8A-6 below.

Area of Sensitivity to	Magnitude					
Activity	Large Medium		Small			
Earthworks						
High	High risk	Medium risk	Low risk			
Medium	Medium risk	Medium risk	Low risk			
Low	Low risk	Low risk	Negligible			
Construction						
High	High risk	Medium risk	Low risk			
Medium	Medium risk	Medium risk	Low risk			
Low	Low risk	Low risk	Negligible			
Trackout						
High	High risk	Medium risk	Low risk			
Medium	Medium risk	Low risk	Negligible			
Low	Low risk	Low risk	Negligible			

Table 8A-6: Classification of Risk of Unmitigated Impacts

Magnitude Assessment

8.4.7 For the purpose of this assessment, the Site is considered to be a large emissions source for fugitive dust emissions from construction related activities, as defined in Table 8A-1.

Receptor Identification

8.4.8 Human health and ecological receptors have been identified within the Study Area and are shown in Table 8A-7 (CDR = Construction Dust Receptor).

Table 8A-7: Identification of Receptors for Construction Dust Assessment

ID	Receptor name	Receptor type	Approx. distance (m) from site boundary or exit	Approx. distance to construction route (m)	Within screening distance?	Receptor sensitivity to dust and particulate matter
CDR1	Wilton Avenue	Residential	25	380	Yes	High
CDR2	Armitage Road	Residential	165	640	Yes	Low
CDR3	Pasture Lane	Residential	15	900	Yes	High
CDR4	Kings Close	Residential	0	600	Yes	High
CDR5	Wilton Green	Residential	165	295	Yes	Low
CDR6	Meadowgate	Residential	35	530	Yes	Medium
CDR7	Hutton Road	Residential	12	500	Yes	High
CDR8	Roseberry Crescent	Residential	60	569	Yes	Medium

ID	Receptor name	Receptor type	Approx. distance (m) from site boundary or exit	Approx. distance to construction route (m)	Within screening distance?	Receptor sensitivity to dust and particulate matter
CDR9	Wilton Way	Residential	10	565	Yes	High
CDR10	Coniston Road	Residential	10	425	Yes	High
CDR11	Slater Walk	Residential	0	370	Yes	High
CDR12	Shakespeare Avenue	Residential	32	360	Yes	Medium
CDR13	Kinglsey Road	Residential	88	400	Yes	Low
CDR14	Birchington Avenue	Residential	225	350	Yes	Low
CDR15	Tennyson Close	Residential	239	550	Yes	Low
CDR16	St. Andrew's Road East	Residential	175	200	Yes	Low
CDR17	St. David's Road	Residential	40	100	Yes	High
CDR18	Cresswell Road	Residential	0	75	Yes	High
CDR19	Corncroft Mews	Residential	0	60	Yes	High
CDR20	Hill View Nursing Home	Residential/ Hospital	210	680	Yes	Low
CDR21	Dormanstown Primary School	School	260	650	Yes	Low
CDR22	Wilton Primary School	School	185	800	Yes	Low
CDR23	Whale Hill Primary School	School	365	965	Yes	Low
CDR24	Caedmon Primary School	School	470	900	Yes	Low
CDR25	St. Mary's Roman Catholic Primary School	School	355	660	No	Low
CDR26	Grangetown Primary School	School	350	360	Yes	Low
CDR27	Whale Hill Community Centre	Social	200	775	Yes	Low
CDR28	Church of St Hilda of Whitby	Religious	292	691	Yes	Low
CDR29	Warrenby Industrial Estate	Commercial	215	1,150	Yes	Low
CDR30	Bolckow Industrial Estate	Commercial	0	0	Yes	Medium

ID	Receptor name	Receptor type	Approx. distance (m) from site boundary or exit	Approx. distance to construction route (m)	Within screening distance?	Receptor sensitivity to dust and particulate matter
CDR31	Trunk Road Industrial Estate	Commercial	0	0	Yes	Medium
CDR32	Kirkleatham Business Park	Commercial	50	2,033	Yes	Low
CDR33	Wilton International	Commercial	0	585	Yes	Medium
CDR34	Haverton Industrial Estate	Commercial	580	6,885	Yes	Low
CDR35	Riverside Park Industrial Estate	Commercial	310	7,320	Yes	Low
CDR36	Billingham Reach Industrial Estate	Commercial	380	7,820	Yes	Low
CDR37	Belasis Hall Technology Park	Commercial	0	7,656	Yes	Medium
E1	Teesmouth and Cleveland Coast SSSI	Ecological	0	1,200	Yes	High
E1	Teesmouth and Cleveland Coast SPA	Ecological	0	1,900	Yes	High
E1	Teesmouth and Cleveland Coast Ramsar	Ecological	0	1,900	Yes	High

Area Sensitivity Assessment

8.4.9 The receptor sensitivity to the effects of dust soiling and PM₁₀ (human health) impacts has been determined for all activities, based on the closest distance from the identified receptors to those activities, as summarised in Table 8A-8 below. The overall area sensitivity to dust soiling and PM₁₀ (human health) is considered to be 'low', whilst the area sensitivity to ecological dust impacts is considered to be 'medium'.

Table 8A-8: Area Sensitivity for Receptors of Construction Dust

Activity	Potential impact	Receptor sensitivity and distance to activity	Area sensitivity
	Dust soiling	High sensitivity (<10 receptor) <20 m	Medium
Demolition	Health PM ₁₀	Medium Sensitivity (<10 receptors) <20 m	Low
	Ecology	High sensitivity (<10 receptor) <20 m	High
Earthworks	Dust soiling	High sensitivity (<10 receptor) <20 m	Medium
	Health PM ₁₀	Medium Sensitivity (<10 receptors) <20 m	Low

Activity	Potential impact	Receptor sensitivity and distance to activity	Area sensitivity
	Ecology	High sensitivity (<10 receptor) <20 m	High
	Dust soiling	High sensitivity (<10 receptor) <20 m	Medium
Construction	Health PM ₁₀	Medium Sensitivity (<10 receptors) <20 m	Low
	Ecology	High sensitivity (<10 receptor) <20 m	High
	Dust soiling	High sensitivity (<10 receptor) <20 m	Low
Trackout	Health PM ₁₀	Medium Sensitivity (<10 receptors) <20 m	Low
	Ecology	High sensitivity (<10 receptor) <20 m	Low

8.4.10 The risk of impacts from unmitigated activities has been determined through combination of the potential dust emission magnitude and the sensitivity of the area, for each activity to determine the level of mitigation that should be applied. The risk of impacts from unmitigated activities are summarised in Table 8A-9 below.

Table 8A-9: Risk of Impacts from Unmitigated Activities

Activity	Demolition	Earthworks	Construction	Trackout			
Dust Emission Magnitude	Medium	Large	Large	Medium			
Risk of impacts from unmitigated activities							
Dust soiling (medium sensitivity)	Low Risk	Medium Risk	Medium Risk	Low Risk			
Health PM ₁₀ (low sensitivity)	Low Risk	Low Risk	Low Risk	Low Risk			
Ecology	High	High	High	Medium			

- 8.4.11 The risk assessment for construction dust indicates that there would be a low risk of unmitigated dust impacts on human health (PM₁₀) and a low to medium risk of dust impacts on dust soiling from unmitigated earthworks, construction and track out activities. The assessment also shows that the impact of unmitigated construction activities on ecological sites is likely to be high.
- 8.4.12 These risk classifications are solely used to select the appropriate schedule of mitigation measures from IAQM guidance. For all but the smallest of sites the use of the high-risk schedule of measures represents good working practice.
- 8.4.13 On consideration of the likely effectiveness of these measures, additional site-specific measures will be identified in the CEMP if required, but at this stage the requirement for any such measures has not been identified.

8.5 Construction Traffic Assessment

Introduction

- 8.5.1 For the construction traffic assessment all affected roads have been assessed at a 'detailed level' of assessment. As detailed in IAQM Guidance, a 'detailed level' assessment uses dispersion modelling to estimate pollutant concentrations more accurately, taking into account additional variables. The detailed assessment of local air quality reported herein has used the Cambridge Environmental Research Consultants (CERC) Atmospheric Dispersion Modelling System (ADMS) Roads dispersion model (version 4.1.1) to predict road pollutant contributions at identified sensitive receptors.
- 8.5.2 Predictions have been made for the baseline year (2019) and the peak construction year (2024) with the Proposed Development construction work (Do Something) and without the Proposed Development construction work (Do Minimum). On the basis of these predictions, the change in key pollutant concentrations (NO₂, PM₁₀ and PM_{2.5}) associated with the Proposed Development have been established.
- 8.5.3 Predictions have been verified by comparing the baseline modelling predictions and baseline air quality monitoring data. Where systematic bias is evident in the base year verification, an adjustment factor has been calculated (as set out in Section 8.5.26 of this Appendix) and applied to bring modelled concentrations more in line with monitored concentrations.
- 8.5.4 A key element of the local construction phase detailed assessment is the rate of improvement in air quality over time as cleaner road vehicles enter the national vehicle fleet. Due to the current uncertainty in projected year on year improvements in UK vehicle fleet emissions and background pollutant concentrations, this assessment has made use of the approach set out in the Highways England (HE) Design Manual for Roads and Bridges(DMRB) guidance (DMRB LA 105 Air Quality (formerly Interim Advice Note IAN 170/12). Referred to as Gap Analysis, the method considers Defra's advice on long-term trends related to roadside NO₂ concentrations, which suggests that there is a gap between current projected vehicle emission reductions and projections on the annual rate of improvements in ambient air quality as previously published in Defra's technical guidance and observed trends. This is due to discrepancies between measured NO₂ trends and pre-Euro 6/VI EFT projections, which were based on roadside measurements taken before Euro 6/VI vehicles entered the UK fleet, i.e. pre-2015 data. Consequently, HE developed a set of NO₂ projection factors to inform scheme air quality assessments and these projections are referred to as long-term trend (LTT).
- 8.5.5 The impact of the Proposed Development is based on modelled predictions of pollutant concentrations in the scenarios considered, taking account of the Gap Analysis approach, described above, and Defra LAQM guidance and tools, including the current version of the NO_x to NO₂ conversion approach and background maps. Predictions are also informed by two-way 24 hour annual average daily traffic flow data, sourced from Chapter 16: Traffic and

Transportation (PEI Report, Volume I), and hourly sequential meteorological data from a representative meteorological station.

- 8.5.6 Further details of the assessment methodology including the inputs used in the ADMS-Roads model (including meteorology data), model post-processing (e.g. NO_x to NO₂ conversion) and the approach taken to model verification (including all monitoring locations used in the verification process) are presented in the following sub-sections.
- 8.5.7 Representative sensitive receptors (e.g. residential properties and ecological sites) have been selected for assessment within the local air quality assessment. These include those sensitive receptors located closest to the Study Area for construction effects.
- 8.5.8 The predicted air quality impacts of the Proposed Development are evaluated against relevant national, regional and local air quality planning policy. An evaluation of the significance of the local air quality assessment findings at sensitive receptors for human health has been undertaken in accordance with IAQM/ EPUK guidance. It is considered that the determination of significance using the IAQM/EPUK guidance is more conservative for the assessment of the Proposed Development than the use of significance criteria provided in HE guidance, where a significant effect can only occur when there is an exceedance of an air quality standard in either future baseline or future construction phase scenarios.
- 8.5.9 The significance of the effects on ecological receptors, including the magnitude of change in NO_x and nitrogen deposition, are considered as part of the Ecology and Nature Conservation assessment (see Chapter 12: Terrestrial Ecology and Nature Conservation (PEI Report, Volume I)).

Screening Criteria

- 8.5.10 The construction phase traffic assessment considers the impact of emissions associated with additional heavy duty vehicles (HDV vehicles >3.5t in weight) and light duty vehicles (LDV vehicles <3.5t in weight) introduced to the local road network due to construction work associated with the Proposed Development, including those associated with the import and export of materials to and from site, and the commuting of contractors.
- 8.5.11 The screening of traffic data has been undertaken using both the approach set out in the DMRB guidance and the approach set out by IAQM guidance. The IAQM approach identifies a larger air quality Study Area and more stringent criteria for the identification of affected road links, and therefore this has been applied to the assessment. The IAQM criteria is summarised in Table 8A-10.
- 8.5.12 The construction traffic assessment considers those areas where a change in traffic above the criteria identified in Table 8A-10 occurs in the immediate area around the Proposed Development. There are no Air Quality Management Areas (AQMAs) declared within the Study Area, consequently, only roads with changes of more than 500 AADT in LDVs or 100 AADT in HDVs are considered to be within the construction Study Area. The Study Area is shown in Figure 8-3 (PEI Report, Volume II).

Table 8A-10: Screening Criteria for Determining the Study Area

If the Development will:	Indicative Criteria to Proceed to an Air Quality Assessment
Cause a significant change in Light Duty Vehicle (LDV) traffic flows on local roads with relevant receptors. (LDV = cars and small vans <3.5t gross vehicle weight).	A change of LDV flows of: - more than 100 AADT within or adjacent to an AQMA - more than 500 AADT elsewhere.
Cause a significant change in Heavy Duty Vehicle (HDV) flows on local roads with relevant receptors. (HDV = goods vehicles + buses >3.5t gross vehicle weight).	A change of HDV flows of: - more than 25 AADT within or adjacent to an AQMA - more than 100 AADT elsewhere.

Modelled Scenarios

- 8.5.13 A quantitative assessment of the impact of exhaust emissions from additional road traffic has been undertaken for the following scenarios:
 - 2019 Baseline Scenario (for model verification process) (Base);
 - 2024 Future Construction Year Base (for long term trends calculations) (Future Base);
 - 2024 Future Construction Year Base + Committed Development Scenario (Do Minimum); and
 - 2024 Future Construction Year Base + Committed + Peak Construction Scenario (**Do Something**).

Model Inputs

8.5.14 The general model conditions that will be used in the assessment of road traffic emissions are summarised in Table 8A-11. Other more detailed data used to model the dispersion of emissions is considered below.

Traffic Data

- 8.5.15 The traffic data used in this assessment has been prepared by AECOM and takes the form of Annual Average Daily Traffic (AADT).
- 8.5.16 The future construction base year is 2024. The construction base year is the period where the number of construction vehicles accessing the Site will peak and is assumed to be a worst-case scenario for assessing potential effects due to construction traffic. All future scenarios consider traffic generated from other committed developments within the Study Area. AADT traffic flows are presented in Table 8A-12.

Emissions Data

8.5.17 The magnitude of road traffic emissions for the baseline and with development scenarios have been calculated from traffic flow data using the Defra's current emission factor database tool EFT 9.0 (0). The uncertainty in future emission rates is considered by use of HE Gap Analysis. The assessment considers the construction phase impact of road traffic

emissions at receptors adjacent to roads in the vicinity of the Proposed Development.

Table 8A-11: General ADMS Roads Model Conditions

Variable	Input
Surface Roughness at source	0.5 m
Minimum Monin-Obukhov length for stable conditions	10 m
Receptors	Selected discrete receptors
Receptor location	X,Y co-ordinates determined by GIS. The height of residential receptors will be set at 1.5 metres
Emissions	NOx, PM ₁₀
Emission Factors	Emission Factor Toolkit version 9.0.1 for 2018 for all scenarios (0) - $PM_{2.5}$ vehicular emissions were assumed to be the same as PM_{10}
Meteorological Data	1 year of hourly sequential data, Durham Tees Valley Meteorological site (2019)
Emission Profiles	None used – emissions averaged across a 24 hour period
Terrain Types	Flat terrain
Model Output	Long-term annual mean NO _X concentration (μ g/m ³) Long-term annual mean PM ₁₀ concentration (μ g/m ³) Long-term annual mean PM _{2.5} concentration (μ g/m ³)

Modelled Domain – Discrete Receptors

- 8.5.18 In line with guidance and standard practice, representative worst-case receptors located within 200 m of road links associated with the Proposed Development (i.e. the Study Area for the traffic assessment) are considered in this assessment. For human health receptors, receptor locations represent the nearest façade of a residential property, school or medical facility to the road links considered. For ecology receptors, they represent the nearest part of each designated area to the road links, with additional receptor points set in a transect with increasing distance from the road links, to demonstrate the spatial variation in predicted impacts across each designated site.
- 8.5.19 This report has considered all receptors that appear within 200 m of the road network of this Study Area that have AADT flows reported for them in Chapter 16: Traffic and Transportation (PEI Report, Volume I). Consequently, discrete receptors have been identified irrespective of the change in AADT flow between base year and future year scenarios for a road.
- 8.5.20 The receptors for which the impact of road traffic emissions will be predicted are listed in Table 8A-13 and Table 8A-14 (TR = Traffic Receptor).

Table 8A-12: Road Traffic Data

	Base		Future Base		Do Minimum		Do Something					
Road Name	Total AADT	HDV	Avg. Speed (km/hr)	Total AADT	HDV	Avg. Speed (km/hr)	Total AADT	HDV	Avg. Speed (km/hr)	Total AADT	HDV	Avg. Speed (km/hr)
A1085 Trunk Road, 100 m east of Ennis Road	12,27 4	1,049	70	12,857	1099	70	13,389	1,099	70	13,911	1099	70
A1085 Trunk Road, 1,345 m south of West Coatham Lane	14,38 7	1,275	82	15,070	1336	82	15,285	1,402	82	16,903	1482	82
A1042 Kirkleatham Lane, 85 m south of Staintondale Avenue	11,79 1	762	52	12,351	799	52	12,351	865	52	12,607	865	52
A1085 Trunk Road, 500 m north of A1053 Tees Dock Road	16,05 8	2,012	83	16,821	2107	83	17,036	2,173	83	18,654	2253	83
A1085 Broadway, 235 m east of Birchington Avenue	8,093	521	53	8,478	546	53	8,490	546	53	8902	546	53
B1380 High Street, 50 m east of Lackenby Lane	9,835	826	50	10,302	865	50	10,306	865	50	10,364	865	50
A66, 140 m east of Whitworth Road	19,86 5	3,662	66	20,808	3836	66	20,980	3,903	66	22,038	3943	66
A1046 Port Clarence Road, 20 m north of Beech Terrace	7,612	896	47	7,974	938	47	7,974	938	47	8074	948	47
A178 Seaton Carew Road, 535 m north of Huntsman Drive	7,814	998	72	8,185	1046	72	8,185	1,046	72	8285	1056	72
Unnamed Road, 725 m east of A178 Seaton Carew Road	4,206	860	59	4,406	901	59	4,406	901	59	4506	911	59
A1053 Greystone Road	14,38 7	1,392	94	15,170	1468	94	15,624	1,470	94	15,772	1510	94

A174 (West of Greystone Roundabout)	31,75 8	1,936	106	33,486	2041	106	34,273	2,041	106	34,363	2081	106
Unnamed Road between public road network and the Site entrance	0	0	N/A	0	0	N/A	0	0	N/A	2060	80	32

Table 8A-13: Modelled Human Receptors

Receptor ID	x	У	Description
TR1	450068	521631	Saltview Terrace, Stockton-on-Tees, Middlesbrough TS2 1SQ
TR2	450049	521620	Saltview Terrace, Stockton-on-Tees, Middlesbrough TS2 1SQ
TR3	449463	521974	High Clarence Primary School. Port Clarence Road, Middlesbrough TS2 1SU
TR4	449092	522334	2 Fieldview Close, Stockton-on-Tees, Middlesbrough TS2 1TN
TR5	456153	518576	2 Keepersgate, Eston, Middlesbrough TS6 9NY
TR6	456240	519019	19 Moorgate, Middlesbrough, TS6 9QE
TR7	456477	919314	23 High Street, Middlesbrough, TS6 8DL
TR8	455429	520571	87 Broadway, Middlesbrough TS6 7HS
TR9	455434	520610	51 Eversham Road, Middlesbrough TS6 7ER
TR10	455189	520409	Grangetown Primary School, St Georges Rd W, Middlesbrough TS6 7JA
TR11	455306	520890	139 Bolckow Road, Grangetown, Middlesbrough TS6 7EJ
TR12	454846	520708	8 St Nicholas Close, Grangetown, Middlesbrough TS6 7SY
TR13	458240	520240	North Lodge, Wilton, Lazenby, Redcar TS10 4QZ
TR14	457463	519589	Wilton Primary School, 12 High Street, Lazenby, Middlesbrough TS6 8DX
TR15	457559	519861	2 Grange Estate, Middlesbrough TS6 8EJ
TR16	457455	519763	Brookfield Care Home, High Street, Lazenby, Middlesbrough TS6 8DX
TR17	457311	519649	10 Chestnut Close, Middlesbrough TS6 8DT
TR18	457016	519403	Police House, Eston Road, Lazenby, Middlesbrough TS6 8DW
TR19	459216	524569	2 Kirkleatham Lane, Redcar TS10 5BZ
TR20	459262	524598	4 Corporation Road, Redcar TS10 1PB

Table 8A-14: Modelled Ecological Receptors

Receptor ID	x	У	Designated site
E1_107m	457334	525348	Teesmouth and Cleveland Coast
E1_112m	457339	525349	Teesmouth and Cleveland Coast
E1_117m	457344	525351	Teesmouth and Cleveland Coast
E1_122m	457349	525352	Teesmouth and Cleveland Coast
E1_127m	457353	525353	Teesmouth and Cleveland Coast
E1_137m	457363	525356	Teesmouth and Cleveland Coast
E1_147m	457373	525359	Teesmouth and Cleveland Coast
E1_157m	457383	525361	Teesmouth and Cleveland Coast

Receptor ID	x	У	Designated site
E1_167m	457392	525364	Teesmouth and Cleveland Coast
E1_177m	457402	525367	Teesmouth and Cleveland Coast
E1_187m	457412	525369	Teesmouth and Cleveland Coast
E1_197m	457421	525372	Teesmouth and Cleveland Coast
E1_200m	457424	525373	Teesmouth and Cleveland Coast
E7_5m	458966	524537	Coatham Marshes
E7_10m	458964	524542	Coatham Marshes
E7_15m	458963	524546	Coatham Marshes
E7_20m	458961	524551	Coatham Marshes
E7_25m	458959	524556	Coatham Marshes
E7_35m	458956	524565	Coatham Marshes
E7_45m	458952	524575	Coatham Marshes
E7_55m	458949	524584	Coatham Marshes
E7_65m	458946	524594	Coatham Marshes
E7_75m	458942	524603	Coatham Marshes
E7_85m	458939	524613	Coatham Marshes
E7_95m	458935	524622	Coatham Marshes
E7_105m	458932	524632	Coatham Marshes
E7_130m	458924	524655	Coatham Marshes
E7_155m	458915	524679	Coatham Marshes
E7_180m	458907	524702	Coatham Marshes
E7_200m	458900	524721	Coatham Marshes
E8_58m	456441	518679	Wilton woods
E8_63m	456444	518675	Wilton Woods
E8_68m	456448	518671	Wilton Woods
E8_73m	456451	518668	Wilton Woods
E8_78m	456454	518664	Wilton Woods
E8_88m	456461	518656	Wilton Woods
E8_98m	456467	518649	Wilton Woods
E8_108m	456474	518641	Wilton Woods
E8_118m	456481	518634	Wilton Woods
E8_128m	456487	518626	Wilton Woods
E8_138m	456494	518619	Wilton Woods
E8_148m	456500	518611	Wilton Woods
E8_158m	456507	518604	Wilton Woods
E8_183m	456524	518585	Wilton Woods

Receptor ID	x	у	Designated site
E8_200m	456535	518572	Wilton Woods

Meteorological Data

8.5.21 The model runs carried out for the Proposed Development used hourly sequential data from Durham Tees Valley, year 2019, consistent with the year chosen to verify the performance of the model against measured NO₂ concentrations. This meteorological site is located approximately 21 km southwest of the Study Area with a measured prevailing wind of between 3 and 5 m/s from south-south-west. A wind rose for this site is presented in Figure 8A-1.

Figure 8A-1: Durham Tees Valley 2019 Wind Rose

Background Concentrations

8.5.22 Annual average background concentrations were taken from Defra's 2017 baseline 1x1 km background maps and adjusted using Defra's adjustment tool removing emissions from road traffic for motorways and primary or trunk A roads. The data used in the assessment is presented for the centre of each 1x1 km grid square in Table 8A-15. The Defra background concentrations have also been compared against Local Authority background monitoring, which has suggested no uplift is required.

Year	Pollutant	Minimum concentration (µg/m³)	Maximum concentration (µg/m³)
2019	NO _x	5.9 (474500, 511500)	50.8 (454500, 525500)
	NO ₂	4.6 (474500, 511500)	28.8 (454500, 525500)
	PM10	9.1 (473500, 511500)	15.3 (446500, 530500)
_	PM _{2.5}	6.1 (449500, 536500)	8.9 (441500, 515500)
2024	NO _x	4.8 (474500, 511500)	46.7 (454500, 525500)
	NO ₂	3.8 (474500, 511500)	27 (454500, 525500)
	PM ₁₀	8.6 (473500, 511500)	14.8 (446500, 530500)
	PM _{2.5}	5.7 (474500, 520500)	8.5 (441500, 515500)

Table 8A-15: Defra Modelled Background Concentrations

Consideration of Terrain

8.5.23 Emissions from road traffic make the greatest contribution to pollutant concentrations at sensitive receptors adjacent to the source (i.e. at the roadside). For this reason, there is not normally a large variation in height between the emission source and residential properties next to the roads included in the model. Therefore, terrain is not included in the road traffic modelling assessment.

No_x To No₂ Conversion

- 8.5.24 To accompany the publication of the guidance document LAQM.TG(16), a NO_x to NO₂ converter was made available as a tool to calculate the road NO₂ contribution from modelled road NO_x contributions. The tool comes in the form of an MS Excel spreadsheet and uses borough specific data to calculate annual mean concentrations of NO₂ from dispersion model output values of annual mean concentrations of NO_x. Version 7.1 (April 2019) of this tool has been used to calculate the total NO₂ concentrations at receptors from the modelled road NO_x contribution and associated background concentration. Due to the location of the Proposed Development, Redcar and Cleveland Borough Council (RCBC) has been specified as the local authority and the 'All other non-urban UK traffic' mix selected.
- 8.5.25 PM_{2.5} concentrations have been considered by assuming the predicted PM₁₀ road contribution is all PM_{2.5} and adding the maximum contribution to the background concentration of PM_{2.5}. This has then been compared to the objective value for PM_{2.5} to confirm predicted concentrations are below the objective.

Bias Adjustment of Road Contribution No_x, Pm₁₀ And Pm_{2.5}

8.5.26 The modelled road NO_x contributions from the ADMS-Roads model has been adjusted for bias following the method described in LAQM.TG(16).

- 8.5.27 Monitoring data used for model verification typically includes that sourced from local authorities, under their Local Air Quality Management duties, and data gathered by project-specific baseline surveys. A baseline NO₂ monitoring survey is currently being undertaken for this project, however, at the time of the assessment to inform this PEI Report, no data was available for use. The project-specific baseline NO₂ data being gathered will be available to inform the assessment to accompany the final ES.
- 8.5.28 In the absence of Project-specific data a review of existing and publicly available local authority data has been undertaken and found that only one monitoring location is situated within the Study Area (RCBC diffusion tube R27), and that the most recent data available for that location is for 2018, which does not match the PEI Report baseline assessment year of 2019. The RCBC monitoring data for this location for 2019 should be available to inform the assessment to accompany the final ES.
- 8.5.29 In the absence of data suitable for model verification, a hypothetical verification factor of 3.0 has been used to inform the current assessment. This factor is based on professional experience of dispersion model verification exercises in similar environments.
- 8.5.30 The verification factor was applied to the predicted road NO_x concentrations prior to the conversion of road NO_x to total NO₂ concentrations at the receptors.
- 8.5.31 There is insufficient roadside measurement data for the primary pollutants PM₁₀ or PM_{2.5} within the Study Area. The same bias adjustment factor derived for the modelled contributions of the primary pollutant NO_x has been applied to the modelled road PM₁₀ and PM_{2.5} contributions, as recommended in LAQM.TG(16).

Predicting the Number of Days in Which the No₂ Hourly Mean Objective is Exceeded

- 8.5.32 Research projects completed on behalf of Defra and the Devolved Administrations, have concluded that the hourly mean NO_2 objective is unlikely to be exceeded if annual mean concentrations are predicted to be less the 60 μ g/m³.
- 8.5.33 In 2003, Laxen and Marner concluded:
- 8.5.34 '...local authorities could reliably base decisions on likely exceedances of the 1-hour objective for nitrogen dioxide alongside busy streets using an annual mean of 60 μg/m³ and above.'
- 8.5.35 The findings presented by Laxen and Marner (2003) are further supported by AEAT (2008) who revisited the investigation to complete an updated analysis including new monitoring results and additional monitoring sites. The recommendations of this report are:
- 8.5.36 'Local authorities should continue to use the threshold of 60 μg/m³ NO₂ as the trigger for considering a likely exceedance of the hourly mean nitrogen dioxide objective.'

8.5.37 Therefore, this assessment evaluates the likelihood of exceeding the hourly mean NO₂ objective by comparing predicted annual mean NO₂ concentrations at all receptors to an annual mean equivalent threshold of 60 μ g/m³. Where predicted concentrations are below this value, it can be concluded that the hourly mean NO₂ objective (200 μ g/m³ NO₂ not to be exceeded more than 18 times per year) will be achieved.

Predicting the Number of Days in Which the Pm₁₀ 24-Hour Mean Objective is Exceeded

- 8.5.38 The guidance document LAQM.TG(03) sets out the method by which the number of days in which the PM₁₀ 24hr objective is predicted to be exceeded can be obtained based on a relationship with the predicted PM₁₀ annual mean concentration. The most recent guidance LAQM.TG(16) suggests no change to this method. As such, the formula used within this assessment is:
- 8.5.39 No. PM_{10} 24-hour mean exceedances = -18.5 + 0.00145 × C³ + (206/C)
- 8.5.40 Where C is the annual mean concentration of PM₁₀.

Specialized Model Treatments

8.5.41 No specialised model treatments have been used in the assessment of construction road traffic emissions.

Calculation of Nitrogen and Acid Deposition for Ecological Receptors

8.5.42 Conversion factors for calculating nitrogen and acid deposition from modelled NO₂ are found in the DMRB LA 105 Air Quality guidance.

Results of the Construction Traffic Assessment

- 8.5.43 Table 8A-16 shows the predicted annual mean concentrations of NO₂, PM₁₀ and PM_{2.5}; and number of exceedances of the 24-hour 50 μg/m³ PM₁₀ objective for the Do Something scenario at the worst case receptor. The value in brackets indicates the difference between the Do Minimum and Do Something scenario.
- 8.5.44 With reference to the significance criteria, impacts at all human receptors can be considered negligible as both: the change between the Do Minimum and Do Something scenarios for all receptors is less than 1% of the Air Quality Assessment Level; and all receptors are below 75% of the Air Quality Assessment Level.

Receptor ID	Annual Mean NO₂ / µg/m³	Annual Mean PM _{2.5} / μg/m³	Annual Mean PM ₁₀ / μg/m³	No. of exceedances for 24-hour average PM ₁₀ / days
TR1	21.3 (0.1)	7.5 (<0.1)	11.8 (<0.1)	<1 (0)
TR2	21.9 (0.1)	7.5 (<0.1)	11.9 (<0.1)	<1(0)
TR3	28.5 (0.1)	7.9 (<0.1)	12.6 (<0.1)	<1 (0)
TR4	20.5 (0.1)	7.3 (<0.1)	11.7 (<0.1)	<1(0)
TR5	27.8 (<0.1)	8.8 (<0.1)	14.5 (<0.1)	<1 (0)
TR6	18.6 (0.1)	8.3 (<0.1)	14.2 (<0.1)	<1 (0)
TR7	23.1 (0.1)	8.8 (<0.1)	15.2 (<0.1)	<1 (0)
TR8	18.4 (0.2)	7.7 (<0.1)	12.3 (0.1)	<1 (0)
TR9	20.7 (0.2)	8.0 (<0.1)	12.8 (0.1)	<1 (0)
TR10	14.4 (<0.1)	7.3 (<0.1)	11.4 (<0.1)	<1 (0)
TR11	18.9 (0.2)	7.8 (0.1)	12.4 (0.1)	<1 (0)
TR12	18.9 (0.2)	7.8 (<0.1)	12.5 (0.1)	<1 (0)
TR13	16.1 (<0.1)	7.4 (<0.1)	12.4 (<0.1)	<1 (0)
TR14	12.1 (<0.1)	7.0 (<0.1)	11.4 (<0.1)	<1 (0)
TR15	15.4 (0.1)	7.4 (<0.1)	12.1 (<0.1)	<1 (0)
TR16	15.4 (0.1)	7.4 (<0.1)	12.1 (<0.1)	<1 (0)
TR17	17.2 (0.2)	7.6 (<0.1)	12.5 (<0.1)	<1 (0)
TR18	18.1 (0.2)	7.7 (<0.1)	12.6 (<0.1)	<1 (0)
TR19	22.1 (0.1)	7.8 (<0.1)	12.3 (<0.1)	<1 (0)
TR20	21.2 (0.2)	7.7 (<0.1)	12.0 (<0.1)	<1 (0)

Table 8A-16. Results of Construction Traffic Impact Assessment at HumanReceptors

Do Something Scenario Results

Values in parentheses indicate the difference between the Do Something scenario results and the Do Minimum scenario results; (Do Something – Do Minimum)

8.5.45 Despite there being some sensitive human receptors along roads where construction traffic will be present, the largest change in AADT flow occurs on the unnamed road that connects the Site with the road network where there are no adjacent human receptors. The significance of the effect of construction traffic is therefore likely to be insignificant given the magnitude of change between the two scenarios is so small where human receptors are present.

8.5.46 Table 8A-17 and Table 8A-18 display the relevant information and assessment results for the significance of construction traffic impacts to be discussed in Chapter 12: Terrestrial Ecology and Nature Conservation (PEI Report, Volume I).

Table 8A-17: Ecological Sites Within Construction Traffic Study Area **Containing Features Which Are Sensitive to Air Pollutants**

Ecological Site	Relevant Nitrogen Critical Load Class ¹	Lower Critical Load (kg N ha ⁻¹ yr ⁻¹) ^{1,2}	Background Nitrogen Deposition (kg N ha ⁻¹ yr ⁻¹) ^{1,3}	Background NO _x Concentration (µg/m ³)
E1 Teesmouth and Cleveland Coast	Stable Coastal Dune	8	10.9	16.3
E7 Coatham Marshes	Marsh	10	14.1	16.9
E8 Wilton Woods	Broadleaved, Mixed and Yew Woodland	10	20.9	11.5

¹ Relevant nitrogen critical load class, lower value of the critical load range, average nitrogen deposition rate and average NOx concentration data taken from Air Pollution Information System website (http://www.apis.ac.uk/). Note these values are statistics for the entire designated site.

² Taken from 'Indicative values within nutrient nitrogen critical load ranges for use in air pollution impact assessments' (http://www.apis.ac.uk /indicative-critical-load-values), and advice from the project ecologists.

³These data are the most recent available from the APIS website and are a 3-year mean for the period 2015-17.

Table 8A-18: Results of Construction Traffic Impact Assessment at Ecological **Receptors**

Ecological Site	Shortest Distance to Road Source (m)	Max DS ¹ NOx conc. (μg/m³)	Max NOx change (DS- DM ²) (μg/m ³)	Max DS Ndep (kg N ha ⁻¹ yr ⁻¹)	Max Ndep change (DS- DM) as % of critical load (%)
E1 Teesmouth and Cleveland Coast	107	17.0	0.5	11.0	0.5
E7 Coatham Marshes	5	47.8	1.0	16.5	0.7
E8 Wilton Woods	58	20.5	+<0.1	22.5	0.1
1 DS = Do Someth	ing				

DM = DO Minimum

8.5.47 It is considered that the assessment of construction traffic impacts carried out, would be comparable to the likely impacts associated with decommissioning activities.

Conclusions 8.6

8.6.1 This report has assessed the impact on local air quality of the construction and demolition activities of the Proposed Development. The assessment has used a sensitivity assessment methodology to assess the likelihood and scale of impact on sensitive receptors located in the vicinity of the Proposed Development of the anticipated dust arisings from the construction and demolition activities and associated road traffic.

- 8.6.2 The evaluation of expected dust arisings from the proposed construction and demolition works has shown that without mitigation there could be a short-term low to medium impact of dust emissions associated with the construction phase on human health and a potential high impact on the ecological receptors, with a significant effect.
- 8.6.3 However, appropriate mitigation measures for managing these risks will be set out in the framework CEMP and will be in accordance with the IAQM guidance. They will be formalised through the CEMP to be prepared by the construction contractor. Through implementation of these measures, no significant dust effects are predicted on any sensitive receptors.
- 8.6.4 The impacts of emissions from construction traffic is likely to result in insignificant effects, given the magnitude of change is considered to be negligible where human receptors are present.

